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The surface impedance is calculated for two-band superconductors in the mixed state near H. The
electromagnetic response function for the two-band system is seen to be the sum of the electromagnetic
response in the individual bands. The individual response functions are then evaluated using a technique
developed by Caroli and Maki. The resulting two-band expression for the surface impedance in the mixed
state near H., is used to analyze surface-impedance measurements on niobium. Both the purity dependence
and the anisotropy in the surface impedances observed by Hibler and Maxwell can be accounted for qualita-

tively by the two-band expression.

I. INTRODUCTION

In a recent paper,! Cyrot and Maki showed that for
pure type-II superconductors (I>>£, where [ is the
electronic mean free path and & is the coherence
length) in high fields, the perturbation expansion in
powers of the order parameter leads to unphysical
results. In order to circumvent this difficulty, Maki?3
made the conjecture that the effect of the magnetic
field on the order parameter of a pure type-II super-
conductor in high fields is similar to that of a transport
current. He was then able to obtain explicit expressions
for the ultrasonic attenuation? and thermal con-
ductivity® in the mixed state of a pure type-II super-
conductor near its upper critical field. Using the same
approach, Caroli and Maki* have calculated the
electromagnetic response for the pure superconductor
in high fields. An interesting feature of all the transport
coefficients obtained by Kagiwada ef al.5 for the mixed
state of pure type-II superconductors near H is the
prediction of a (H.—H)'? field dependence instead of
the linear dependence observed in superconducting
alloys.

Since pure niobium is an intrinsic type-II super-
conductor, measurements of the various transport
properties’™° have been taken in order to verify the
correctness of the various coefficients obtained by
Kagiwada et al. Qualitative agreement with the theo-
retical expressions has been seen in the ultrasonic
attenuation® and thermal conductivity®? data for
niobium near H,; i.e., the (H.— H)V2 field dependence
is clearly observed. Quantitative agreement between the
experimental data and the theoretical expressions can be
achieved only by treating the density of states as an
adjustable parameter. However, this would imply a
purity dependence in the density of states. This purity
dependence in the density of states would lead to an
unobserved purity dependence in the magnetic proper-
ties.67:9

Recent calculation of the band structure in niobjum
has shown the Fermi surface to be comprised of three
sheets which overlap in certain directions. The electrons
on one of the sheets are identified as being s electrons,
while those on the other two sheets belong to the
d band. To account for superconductivity in transition
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elements which have similar band structures, a two-
band model was proposed by Suhl, Matthias, and
Walker (SMW).2 Using this model, Sung and Shen®®
and Radhakrishnan* were able to obtain numerical
fits of the experimental data for various properties of
niobium. More recently, direct evidence for the two-
band model has been obtained in the discovery of a
second transition temperature’® and a second energy
gap'® in niobium. Therefore, it should be expected that
any theoretical expressions for the various transport
properties of superconducting niobium will reflect the
two-band nature of niobium.

It is the purpose of this paper to obtain the two-band
expression for the surface impedance of transition-
element superconductors in high fields and compare it
with the experimentally measured surface impedance
of niobium! in the mixed state. Previously, the author
obtained the two-band expressions for the ultrasonic
attenuation and thermal conductivity in transition-
metal superconductors in the mixed state.”” Using the
two-band expressions, it was possible to explain the
purity dependence seen in the experimental measure-
ments®® without implying the contradictory purity
dependence in the magnetic properties. We shall see
that the purity dependence in the surface impedance
observed by Hibler and Maxwell® (HM) can be
explained by the two-band expression. More impor-
tantly, the observed anisotropy in the surface impedance,
which is in total disagreement with the anisotropy pre-
dicted by the one-band expression of Caroli and Maki,
can be explained qualitatively with the two-band
expression.

II. ELECTROMAGNETIC RESPONSE

An important point to remember when calculating
the electromagnetic response for the two-band system is
that the electric current in the two-band system is just
the sum of the electric currents in the individual bands.
This leads to a response function of the form

Quu (g, @) = ([ Jous jsu]>qu+ ([jdu;jdu]>qu; (2.1)

where jy(a), is the uth component of the electric current
in the s(d) band and w= (2nl)kpT. In order to evaluate
the individual correlation functions appearing in (2.1),
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it will be necessary to make the conjecture that the
effects of the magnetic field on the energy gaps in the
individual bands are similar to those of a transport
current in each band. With this assumption, the
individual correlation functions can be evaluated in
exactly the same manner as in Caroli and Maki* (in
the system where i=kp=c=1),
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where
ps@ (@, @) = (1/7'%, () sinf) exp[— (/e sind)?],
(2.3)
with
&@ =Ve@yr (3eHea )", (2.4)

and where m, is the mass of a s(d) electron, N,y is
the density of states in the s(d) band, vgr is the
velocity of a s(d) electron at the Fermi surface, x, is
the direction cosine, and 6 is the angle between the
magnetic field and the normal to the surface of the
sample. The second term on the right-hand side of
(2.2) is the anomalous skin-effect expression in the
normal state.

Adding the correlation functions associated with the
two bands together, we have for the real and imaginary

parts
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with

4 1
G (psa, 0) = —,72/ dz [1—g2]v2
"V
X/ dx
2.7)

where @ is the tetra-y function, 7,4 is the collision
lifetime of a s(d) electron, and I, is the collision
mean free path for a s(d) electron. An identical expres-
sion for ReQ, (¢, w) can be obtained by the direct
expansion of the Green’s function in powers of the
energy gaps (the Green’s functions for the different
band electrons can be expressed as separate Gor’kov
equations where the energy gaps play the role of the
order parameters). However, the superconducting
corrections to ImQ,, cannot be obtained by the direct
expansion. This singular behavior in A is a consequence
of a coalescence of the two singularities in the density
of states.?

In deriving the above equations, we have assumed
that the microwave current is traveling parallel to the
magnetic field, since it is in this geometry that the
measurements!® were taken. For =0 and %=, the factors
G (p,0) reduce to the functions f®(p) and f@ (o)
defined in Ref. 4, respectively. The complex con-
ductivity is obtained from the relation

exp[—a?%/ (1—22sin%) ]
[1—2%sin29 ]2

cosh™ (mp, @),

os=w 1 ImQ,, (¢, w). (2.8)

The normalized surface impedance is given by
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where we have assumed that the Fermi surface can
still be approximated by a sphere. This results in a
systematic error being introduced into the expression,
but it should not affect the qualitative understanding
of the purity dependence and anisotropy seen in the
surface impedance.

For the purpose of analyzing the experimental data
of HM, we rewrite the surface impedance in the form

VA Ag 84y

Zi =2 exp(zvr/3) {1— ﬁ(l In m) Gd(pd, 9)

N, Ag 8A;
+ Vi, [:’ﬁ‘ (1—1n m) Ga(pa, 6)

_ﬁ_sT(l In ISAI>G(ps,0):|}—1/3. (2.10)

In this form, we see immediately that the two-band
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expression reduces to the result of Caroli and Maki
when the s band disappears.

III. PURITY DEPENDENCE

Nonmagnetic impurities affect the one- and two-band
model in quite different ways. In the one-band super-
conductors, the major effect of the impurities is to smear
out the Fermi surface and thus diminish the anisotropy
in the superconductors. In the two-band model, the
dominant effect of the impurities at low temperatures!
is to cause interband transitions. The rates at which
the transition between the two bands occur are given
by the transition matrix elements

Twa=mnNaf (d9/4) | V.a(8) I2 (3.1)

and

I‘d3=1r7’li;st (d9/47r) l Vsd(g) !2, (3.2)

where T';; is the transition matrix for the scattering
of a s electron into the d band, I'y, is the matrix for the
scattering of the d electrons into the s band, #; is the
impurity concentration, and V. (8) is the interband
scattering potential. Comparing the two transition
matrix elements, we see that Tsy/TesXNa/Ns. For
concentrations of impurities such that I's; is comparable
to the energy gap of the lower band, Wong and Sung!
have shown that only the density of states for the
s electrons is affected by the impurity scattering. The
d band is not affected much by the presence of the
impurities.

Since the thermodynamical properties of the two-
band superconductors are dominated by the more
densely populated d band, the change in the impurity
concentration will not affect the magnetic properties.
A purity dependence does exist in the upper critical
field and the Ginsburg-Landau parameter since these
properties depend to some extent on the s electrons.
By taking into account the contributions due to the
s electrons, Sung® was able to explain the purity
dependence in these properties.

The need for a model in which a purity dependence
occurs in the density of states without implying a
similar dependence in the magnetic properties is seen
in the surface impedance measurements on niobium in
the mixed state near H,.® HM performed their meas-
urements on two extremely pure niobium samples with
residual resistivity ratios of 6500 and 11 000. Over this
range of purities, one expects the purity dependence of
the order parameter to be only a few percent. By
introducing an adjustable parameter into the expression
for the order parameter, HM attempted to fit numeri-
cally the experimental data to the expression obtained
by Caroli and Maki.* The form used by HM for the
order parameter was

_ o HCQ‘-H
T 2Ngm 1.16[2k2 (1) — 1]

where «; is the second Ginzburg-Landau parameter,

dH,
(Hcg—%T 2) , (3.3)
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Ho—3T (dH,»/dt) is obtained from the results of
McConville and Serin,? and N, has the value 5.6 1034
states/cm?® erg (the value obtained from the specific-
heat measurements on niobium?). The procedure used
by HM is equivalent to treating the density of states as
an adjustable parameter.

To obtain the fit of the experimental data on the
RRR 6500 sample, the value for @ was found to be
2.74. For the fit of the data on the RRR 11 000 sample,
a was found to be 1.38. Direct comparison with the
work of Kagiwada ef al.® on the ultrasonic attenuation
in niobium is not possible since different values for the
Fermi velocity were used in the two works. However,
the larger values of a required to fit the data on the
surface impedance for the less pure specimens are
consistent with the observations of Kagiwada ef al.
This apparent purity dependence in the surface imped-
ance is inconsistent with the observed behavior of the
order parameter, i.e., the order parameter does not
vary as much as the implied variation in the density
of states.

To see that the two-band expression (2.10) can ex-
plain qualitatively the purity dependence, we note that
the ratio N/ (N4 Ng) increases with the purity of the
specimens. The leading correction to the surface
impedance caused by the presence of a second band is

N (Ad 84 A, | 8A;
- —In—@G 0)— —1
NA4+Ng\2T " | o] o (pv, 0) 2T " | o]

Gs (ps, 9)>,

(3.4)

which becomes smaller as specimens become less pure.
Thus we see the normalized surface impedance of the
mixed states near H,, increase as the ratio N,/ (N,+N,)
increases, i.e., the surface impedance is higher in the
purer specimen. Quantitative comparison of the
experimental data with the two-band expression can
only be made if the density-of-states ratios for the two
specimens were known.

The advantage of using the two-band expression for
qualitative comparison is that one is not led to false
purity dependence in the order parameter.

IV. ANISOTROPY

In addition to the purity dependence of the surface
impedance in the mixed state of niobium near H.,
HM observed an anisotropy in the surface impedence
as the angle between the magnetic field and the normal
to the surface was increased. They found the surface
impedance grew larger as the angle increased. At an
angle of 50°, the increase in the normalized impedance
was over 7%. This increasing impedance is in total
disagreement with the one-band model which predicts
a decreasing surface impedance.

To see that the observed anisotropy can qualitatively
be accounted for in the two-band model, we write the
two-band expression for the surface impedance in the
mixed state near H, normalized to the value of the
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two-band expression at §=0°:
1+ (A4/2T) (In8A4/| @ | —1)Ga(pa, 0°)—[No/ (Ns+Na)] v
Zo/Znlo _ X[ (44/2T) (In8A./| @ | —1)Ga(pa, 0°)— (As/2T) (In8As/| w | —1)Gi (ps, 0°) ]
Zs/Zn o= 14 (A,/2T) (In84q/| © | —1)Ga(pa, 0)— [N/ (Ns+Na) ]

X[(Ad/ZT) (IHSAd/l w I —_— I)Gd (pd, 0)— (AS/ZT) (IHSAs/[ w l - 1)Gs (ps, 0)]

We note that as the ratio N,/ (N,+Ng) goes to zero, the above ratio reduces to the ratio obtained by Caroli and
Maki.* Using this fact, we can establish the inequality Gi(ps, 0=0°)<Gy(ps, ), where the inequality becomes
larger as the angle increases. With the inequality, we have

Ad( 8A, ) A8< 84,
24 (1,20 4 9)— = (1n 22
[ZT "] Galpa, 0)— 5 (In

o]

—1)Gs(ps,e>]

Ad< 8A,
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We can see that this last inequality can lead to the numerator being larger than the denominator. This could explain
the increase in the surface impedance as the angle increases. Because the N,/ (V.4 Ng) factor in the two-band
expression for the anisotropy, we expect the anisotropy to depend on the purity of the specimens used. We believe
that when dirty niobium samples are used, the anisotropy observed will be the decreasing surface impedance
predicted by the one-band expression of Caroli and Maki.t
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